r - Plot error SVM...min not meaningful for factors -


i trying train svm anomaly detection. this, created train_data , test_data using sourceip , protocol. when trying use plot function, gives me below error...

> plot(svmfit,testdat) error in summary.factor(c(7l, 7l, 7l, 7l, 7l, 7l, 7l, 7l, 7l, 7l, 7l,  :    min not meaningful factors 

how can rid of error..?

following lines of commands in external file

    train_data=read.csv("packetcapture_training.csv")     #read source ip , protocol       xtrain=train_data[4:23,c(3,5)]     ytrain=c(rep(-1,10),rep(1,10))     dat=data.frame(x=xtrain,y=as.factor(ytrain))     library("e1071")     svmfit=svm(y~.,data=dat,kernel="radial",cost=10,scale=false)     summary(svmfit)     test_data=read.csv("packetcapture_testing.csv")     #read source ip , protocol     xtest=test_data[371:390,c(3,5)]     ytest=c(rep(1,10),rep(-1,10))     testdat=data.frame(x=xtest,y=as.factor(ytest))     plot(svmfit,testdat)          > dat                    x.source x.protocol  y 1  fe80::a00:27ff:feee:7ec6     icmpv6 -1 2  fe80::a00:27ff:feee:7ec6     icmpv6 -1 3  fe80::a00:27ff:feee:7ec6     icmpv6 -1 4               172.16.11.1        tcp -1 5             192.168.2.101        tcp -1 6               172.16.11.1        tcp -1 7               172.16.11.1        tcp -1 8               172.16.11.1        tcp -1 9             192.168.2.101        tcp -1 10            192.168.2.101        tcp -1 11              172.16.11.1        tcp  1 12              172.16.11.1        tcp  1 13              172.16.11.1        tcp  1 14            192.168.2.101        tcp  1 15              172.16.11.1        tcp  1 16            192.168.2.101        tcp  1 17              172.16.11.1        tcp  1 18              172.16.11.1        tcp  1 19            192.168.2.101      sshv2  1 20              172.16.11.1        tcp  1  > dput(head(dat,4)) structure(list(x.source = structure(c(6l, 6l, 6l, 1l), .label = c("172.16.11.1",  "192.168.2.100", "192.168.2.101", "cadmusco_8b:7b:80", "cadmusco_ee:7e:c6",  "fe80::a00:27ff:feee:7ec6"), class = "factor"), x.protocol = structure(c(5l,  5l, 5l, 7l), .label = c("arp", "dns", "http", "icmp", "icmpv6",  "sshv2", "tcp", "udp"), class = "factor"), y = structure(c(1l,  1l, 1l, 1l), .label = c("-1", "1"), class = "factor")), .names = c("x.source",  "x.protocol", "y"), row.names = c(na, 4l), class = "data.frame")  > testdat          x.source x.protocol  y 371   172.16.11.1        tcp  1 372   172.16.11.1        tcp  1 373   172.16.11.1        tcp  1 374   172.16.11.1        tcp  1 375   172.16.11.1        tcp  1 376   172.16.11.1        tcp  1 377   172.16.11.1        tcp  1 378   172.16.11.1        tcp  1 379   172.16.11.1        tcp  1 380   172.16.11.1        tcp  1 381   172.16.11.1        tcp -1 382   172.16.11.1        tcp -1 383   172.16.11.1        tcp -1 384   172.16.11.1        tcp -1 385   172.16.11.1        tcp -1 386   172.16.11.1        tcp -1 387   172.16.11.1        tcp -1 388   172.16.11.1        tcp -1 389 192.168.2.101      sshv2 -1 390 192.168.2.101     icmpv6 -1   > dput(head(testdat,4)) structure(list(x.source = structure(c(1l, 1l, 1l, 1l), .label = c("172.16.11.1",  "192.168.2.100", "192.168.2.101", "cadmusco_8b:7b:80", "cadmusco_ee:7e:c6",  "fe80::a00:27ff:feee:7ec6"), class = "factor"), x.protocol = structure(c(7l,  7l, 7l, 7l), .label = c("arp", "dns", "http", "icmp", "icmpv6",  "sshv2", "tcp", "udp"), class = "factor"), y = structure(c(2l,  2l, 2l, 2l), .label = c("-1", "1"), class = "factor")), .names = c("x.source",  "x.protocol", "y"), row.names = 371:374, class = "data.frame") 

the plot.svm function in library("e1071") apparently plot continuous predictors. because model uses 2 categorical predictors, getting error. know kind of visualization expecting?

in examples on page, shows

data(cats, package = "mass") m <- svm(sex~., data = cats) plot(m, cats) 

and there can spread out points along range , cutting can happen @ meaningful break point. categorical predictors, not ordered there's no clear way plot them in similar way really.


Comments

Popular posts from this blog

how to proxy from https to http with lighttpd -

android - Automated my builds -

python - Flask migration error -